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A
s the application of nanomaterials in
consumer products, industry, and
medicine, as well as their presence

in the environment, increases, their physi-
cochemical interactions with biological/
environmental systems have become one
of the most important current cross-
disciplinary challenges.1�3 Nanomaterials'
surface physicochemical properties2,4�10

dictate their environmental and biological
impact. Studies on the complexity of such
interactions, including electrostatic and hy-
drophobic interactions, hydrogen bonding,
and van der Waals (vdW) forces, have been
conducted to better understand the ad-
sorption of biomacromolecules or organic
pollutants in the environment. Quantifica-
tion and standardization of nanomaterials is
at the heart of safe, reliable nanotechnolog-
ical product development. A systematic a
pproach of studying physiochemical prop-
erties relevant to predicting biological end
points is imperatively needed.
The interaction of various molecules with

a nanoparticle surface is primarily driven by

adsorption energy composed of contribu-
tions from several physical or chemical
forces such as electrostatic interactions, hy-
drophobic forces, and hydrogen bonding.11

We previously defined the biological sur-
face adsorption index (BSAI), consisting of
five descriptors obtained from the adsorp-
tion measurements of a set of small organic
molecules to describe the physicochemical
properties of nanomaterial surfaces.12,13

This aids in understanding the interaction
of the particles with either environment-
relevant organic molecules or amino acid
residues and other functional groups from
various biomacromolecules resulting in
the formation of a biocorona,12,13 the latter
considered as the determining factor of
bioidentity, bioavailability, and toxicity of
nanoparticles in biological systems.14�23

The problem facing quantitative risk as-
sessments in nanosafety applications is
that there is no simple experimental ap-
proach that can characterize nanoparticle
properties that are relevant to biological
interactions that modulate nanoparticle
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ABSTRACT Quantitative characterization of nanoparticle interactions with

their surrounding environment is vital for safe nanotechnological development

and standardization. A recent quantitative measure, the biological surface

adsorption index (BSAI), has demonstrated promising applications in nanomaterial

surface characterization and biological/environmental prediction. This paper

further advances the approach beyond the application of five descriptors in the original BSAI to address the concentration dependence of the descriptors,

enabling better prediction of the adsorption profile and more accurate categorization of nanomaterials based on their surface properties. Statistical

analysis on the obtained adsorption data was performed based on three different models: the original BSAI, a concentration-dependent polynomial model,

and an infinite dilution model. These advancements in BSAI modeling showed a promising development in the application of quantitative predictive

modeling in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.
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absorption and biodistribution, as well as toxicity once
delivered to a target organ. All of these interactions are
based on the aforementioned molecular forces that
determine solvation and colligative properties in aque-
ous systems at body temperature, requiring a charac-
terization approach under conditions that mimic this
in vivo microenvironment. Further advancements in
the BSAI would enable this approach to predict the
interactions between nanoparticles and large bio-
macromolecules, which is crucial to predicting both
biodistribution and potential mechanisms of toxicity.
BSAI models have shown their capability of charac-

terizing such surface adsorption energy under biologi-
cally or environmentally relevant conditions; they are
based on the fundamental forces of molecular inter-
actions and can be expressed as24�26

logki ¼ cþ rRi þ pπi þ aRi þ bβi þ vVi,
i ¼ 1, 2, 3, :::, n (1)

where ki is the adsorption coefficient, n is the number
of compounds used as probes, and c is the regression
constant. Five variables [Ri, πi, Ri, βi, Vi] are the molec-
ular descriptors of the ith probe compound, where Ri is
the excess molar refraction representing molecular
force of lone-pair electrons, πi is the polarity/polariz-
ability parameter, Ri and βi are the hydrogen-bond
acidity and basicity, respectively, and Vi is the McGowan
characteristic volumedescribinghydrophobic interactions.
The BSAI nanodescriptors are the regression coefficients
[r, p, a, b, v] reflecting the differential compound�
nanomaterials interactions. Quantitative structure�
activity relationship (QSAR) modeling based onmolecular
connectivity indiceswas tested and compared to the BSAI
approach.27 It showed slightly better predictive ability;
however, the model was not biologically instructive, as it
did not illustrate explicitly the relationship between phys-
icochemical properties of nanomaterials and their behav-
ior in a biological or environmental context.
The BSAI model was originally developed at rela-

tively low probe concentrations for nanoparticle char-
acterization, avoiding further influence of probe
chemical concentrations with nonlinear adsorption
isotherms at higher concentrations. From an experi-
mental perspective, the BSAI nanodescriptors indeed
depend on probe concentrations, as the effect of the
interactions betweenmolecules of the same species as
well as different species became more significant at
higher concentrations.12 In order to better grasp the
properties of the surface physicochemistry of the
particles and eliminate the concentration effects, the
experiments in previous studies were conducted at
extremely low probe concentrations. Concentration
effects are important for predicting chemical adsorp-
tion onto nanomaterials, as there is no control on
contaminant concentration in environmental applica-
tions. A similar linear free energy relationship (LFER)
modeling was performed on adsorption of several

organic molecules onto granular activated carbon, and
linear relationships between the regression coefficients
anda concentration-related termwerediscoveredat very
low concentrations.28 At higher concentrations, a non-
linear relationship between BSAI nanodescriptors and a
concentration term over a broader range of probe con-
centrations was previously suggested.12 Second-order
polynomial regression between BSAI nanodescriptors
and concentration terms was shown to be effective to
quantitatively address the probe concentration effects
prior to the LFER modeling, especially when applying
such a model to the prediction of adsorption of
various chemical species of interest.29 However, a
separate regression analysis requires significantly
more concentration-dependent adsorption data to
ensure the quality of the fitting of the isotherm.
In the current study, different modeling strategies

were employed and compared to address this concen-
tration dependence, including the incorporation of a
second-order polynomial dependence on concentration-
related parameters for each of the nanodescriptors,
directly integrated into the BSAI model, as well as a
Langmuir model of the adsorption isotherms prior to
the application of BSAI (Figure S1). The incorporation
of polynomial dependence directly into the original
model can utilize experimental data more efficiently,
and it does not require additional concentrations to
ensure a smooth fit. For the purpose of interpretation
of the physicochemical relevance of the model, as well
as reducing the possibility of overfitting in cases of a
smaller number of test data, an attempt was made to
reduce the number of regression coefficients. Based on
the polynomial model, less significant factors were
then identified through stepwise regression and elimi-
nated from the model. The new model with a reduced
number of factors was then further evaluated by cross-
validation based on the experimental data. In addi-
tion, the predictive ability of the polynomial model
was demonstrated by select compounds that have
been shown to be environmentally toxic. Lastly, a low-
concentration approximation based on the Langmuir
adsorption model was employed to extrapolate the
adsorption constant at infinite low probe concentration,
followed by a regression of the extrapolated constants
againstmolecular descriptors to build amodel in an ideal
solution to better grasp the physicochemical interactions
between the molecules and the surfaces of the particles.
A comparison between principal component analysis
(PCA) results from the Langmuir infinite dilution model
and the original model was made to demonstrate their
ability to identify and categorize nanomaterials based on
their surface physicochemical properties.

RESULTS

Original BSAI Modeling. Modeling based on our origi-
nal BSAI approach described by Xia et al.12 was per-
formedonadsorptiondataof all nanomaterials. Figure S2a
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shows the five nanodescriptors of AlOOH I nanoparticles
generated from regression analysis of adsorption data
from a wide range of probe chemicals at the lowest
concentration used in this study (W1). The relative
strength of the descriptors (a, b, v values significantly

different from 0) indicated that hydrogen bonding and
hydrophobic forces have the greatest contributions
toward the interactions between organic chemical
species and the surface of the particle. The applicability
of the model was tested by a Williams plot, Figure S2b,

Figure 1. Dependence of nanodescriptors of AlOOH I on probe concentration. Data obtained from a modified model were
shown to be polynomial functions of T = log(Ce/Cs): (a) regression constant c; (b) nanodescriptor r of the excess molar
refraction R; (c) nanodescriptor p of the effective solute dipolarity and polarizability π; (d) nanodescriptor a of the effective
solute hydrogen-bond acidity R; (e) nanodescriptor b of the effective solute hydrogen-bond basicity β; (f) nanodescriptor v
of the McGowan characteristic volume V; (g) comparison of the dependences on concentration among the descriptors;
(h) concentration dependence on predicted log k follows a quadratic polynomial function (AlOOH I�acetophenol).
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showing studentized residuals randomly distributed
below and above 0 within the range from �2.5σ to
2.5σ, hat values all smaller than h* = 0.72. The model
was further tested by randomly splitting the data into a
training set to build the model and an external testing
set for predictive capabilities. The model built on the
training set was also cross-validated by the leave-
one-out method. Although the goodness-of-fit was
verified by the correlation coefficient R2 = 0.86, both
the internal cross-validation (Qcv

2 = 0.66) and external
testing were less than ideal, as shown in Figure S2c.
Regression results from adsorption data at different
concentrations indicated that BSAI descriptors have
different patterns of dependence on varied chemical
probe concentrations, consistent with Xia et al.'s study.12

Predictive Concentration-Dependent Model. To elucidate
the role of concentration in the interaction between
chemical species and nanoparticle surfaces, amodified
model that directly incorporates a concentration-
related term T = log(Ce/Cs) (where Ce is the equilibrium
concentration of a probe in the solution after adsorp-
tion, and Cs is the solubility of the probe; details of the
model are described in the Materials and Methods
section) was introduced. First regression analysis on
the complete set of data was performed. Then the
regression coefficients along with log(Ce/Cs) were used
to reconstruct the BSAI index [r, p, a, b, v] using eq 2.
The dependences on T are obtained in Figure 1.
Apparently the intermolecular forces represented by
the five nanodescriptors have different dependences
on the probe chemical concentration. Judging by the
ranges of those descriptors, the hydrophobic force
(v, 0.82�5.06) has the largest positive contribution
toward the adsorption, and it decreases as the equi-
librium concentration Ce increases. Such a change
could be the result of a competitive binding caused
by the interactions among nanoparticle surfaces, water
molecules, and different organic molecules present in
the mixture. For particles with both hydrophobic and
hydrophilic sites, when most of the binding happens
between the hydrophobic region on the surface of
nanoparticles and the hydrophobic moieties of the
molecules, the contribution from the term represent-
ing hydrophobic force will be relatively larger. As
the chemical concentrations increase, the molecules
are driven to bind with less hydrophobic sites on the
surface of the nanoparticles, which will cause the
contribution from the hydrophobic force term to de-
crease. However, if the concentration is further in-
creased, the density of molecules bound to hydro-
phobic sites can still be increased possibly due to the
reorientation of the particles or even multiple-layer
adsorption caused by intermolecular forces, which
will lead to an increase of v. Hydrogen-bond basicity
(b, �6.35 to �1.14) has a large negative contribution,
indicating the surface is less likely to form a hydrogen
bond with the probe chemicals through accepting

protons than water molecules. This trend increases as
Ce increases possibly because as the proton-accepting
ability of the oxygen atom in water molecules is being
saturated, the organic molecules are forced to form
bonds with surface defects such as oxidation on the
surface of the nanoparticles.

Within the concentration range of our experiments,
most of the BSAI nanodescriptor�concentration rela-
tionships showed obvious nonlinearity, but also a few
have very small quadratic terms (e.g., constant c in the
case of AlOOH I), which means the concentration
dependence of these descriptors can still be described
by linear functions relatively well within the respec-
tive concentration range. Shih et al. proposed a linear
relationship to explain the concentration dependence
of the descriptors over a different and smaller range
of chemical activities (T ranging from �1 to �3) in
cases of granular activated carbon. In general their
approachwas not suitable for the nanosized adsorbent
based on our results and previous studies, possibly
due to a magnified surface chemical effect caused by
significantly higher surface-area-to-mass ratio. But in
some cases the polynomial indices may be eliminated
to reduce the complexity of ourmodel over the specific
range of concentrations in question; such model
reduction will be discussed later.

The method was cross-validated by the leave-one-
out (LOO) method (Qcv

2 = 0.83 for AlOOH I; the rest of
the regression coefficients and validation results of
some example nanoparticles are listed in Table S1a),
as well as external validation by randomly choosing
20% of the entire observations as the testing set and
the rest as the training set to build the model (data
presented in Table S1b and Figure 2 show measured
versus predicted for both training set and testing
set in the case of AlOOH I, training R2 = 0.92 and test-
ing R2 = 0.79). The applicability of using a set of
17-dimensional indices to make a comparison between

Figure 2. Predicted versus measured log k values from
AlOOH I. 20% of the total observations were randomly
chosen as a testing set; the rest were used to build the
model. This figure shows the prediction ability when the
training set contains probes at all concentration groups.
Training R2 = 0.92 and testing R2 = 0.79.
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the nanomaterials in terms of surface physicochemical
properties was explored by reducing the dimension
to two using PCA. PCA mathematically transforms the
17 vectors composed of polynomial indices into a set
of new orthogonal vectors, the first two of which
account for most of the variance possible and were
used to compare between the nanomaterials. Figure 3
clearly demonstrates that both the original BSAI model
and the polynomial model are capable of making the
separation between metal/oxide and carbon-based
nanomaterials. The original BSAI modeling results are
included in the Supporting Information for comparison.

In order to further examine the ability of this poly-
nomial model to interpolate to a different concentration
that is not used formodel building, as well as extrapolate
to different compounds, the model was built after data

from the second highest concentration (W10), and two
probe compounds that are generally considered as en-
vironmental contaminants at four concentration levels
(nitrobenzene and chlorophenol) were removed from
the training set. For the purpose of model reduction,
stepwise regression based onminimal AICc (AICc =AICþ
[(2k(kþ 1))/(n� k� 1)], where n is the sample size and k
is thenumberof parameters in themodel) was employed
for each particle separately, and then the models were
manually adjusted to reach possible unification among
different nanoparticles. The adsorption data set at the
second highest concentration, which was excluded from
the training data, was then used as a validation set to
examine how well the model built, as previously de-
scribed, could be used for predicting the adsorption of
the compounds at a different concentration; data from

Figure 3. Nanoparticle clustering plots by two principal components. The two components were obtained by principal
component analysis of the five nanodescriptors and 17 polynomial indices of both metal/oxide and carbon-based
nanoparticles from (a) original BSAI model and (b) polynomial model.
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nitrobenzene and chlorophenol were used to test
the ability of such a model to predict the adsorption
of environmental contaminant chemical compounds.
Example results are shown in Table S2: the number of
model parameters was reduced to 10 for metal or oxide
particles (5 columns on left) and 6 for carbon-based
particles (5 columns on right). For most of the particles
R2 > 0.8, andvalidationand testing correlation coefficients
(R2validation and Rtesting

2 ) are all larger than 0.7. Figure 4
clearly shows successful predictive abilities of the re-
ducedmodels in cases of AlOOH I (R2 = 0.86, Rvalidation

2 =
0.84, Rtesting

2 = 0.79) andMWNT�OH (R2 = 0.86, Rvalidation
2 =

0.75, Rtesting
2 = 0.79).

Infinite Dilution Adsorption Descriptors. Although the
polynomial model shows great potential in terms of
its predictive capabilities, the excess indices involved
may restrict its application to the interpretation of
surface physicochemical properties; therefore only
the particles with drastically different surface proper-
ties can be clearly distinguished, which in turn may
limit its value for providing guidance in nanomaterials
engineering and safety assessment. Another approach
to address the concentration effect employed herewas
the low-concentration approximation by the Langmuir
model. The probe compound concentration effects are
believed to be largely caused by the intertwined
interactions between water and compound molecules

and between the same type or different types of
molecules,12,29 since the probability for those interac-
tions to occur increases as the concentration increases.
By extrapolating adsorption data to an infinitely low
concentration environment, we were able to mimic an
ideal aqueous environment, and the true surface chem-
ical physical properties of the nanoparticles, which are
not dependent on external factors such as probe con-
centration, can be exposed, investigated, and compared
(Table S3). Figure 5 shows the separation of the metal/
oxide nanoparticles by principal components based
on regression results using the original BSAI model
(Figure 5a, at the lowest concentration) and the Langmuir
low-concentration approximation (Figure 5b). A careful
comparison between the two revealed that the low-
concentration approximation was able to generate
the same grouping but with a much better separa-
tion between different groups. The polynomial
model discussed previously excels in its predictive abil-
ities for both interconcentration and interchemical
species predictions; however when applied in the
comparison of surface physicochemical properties,
it could successfully separate only the carbon-based
from the metal/oxide particles, and the distinc-
tion within the group of metal/oxides was not
detectable. This is possibly because the number
of parameters is much larger in the polynomial
model, and the errors from multiple dimensions

Figure 4. Predicted versusmeasured log k values for (a) AlOOH
I (R2 = 0.86, Rvalidation

2 = 0.84, Rtesting
2 = 0.79) and (b) MWNT�OH

(R2 = 0.86, Rvalidation
2 = 0.75, Rtesting

2 = 0.79).

Figure 5. Nanoparticle clustering plot by two principal
components. The two components were obtained by prin-
cipal component analysis of the five nanodescriptors of
metal and oxide nanoparticles from (a) the original BSAI
model and (b) the low-concentration approximation by the
Langmuir model.
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were confounded when the number of dimensions
was reduced to two.

DISCUSSION

The complexity of the adsorption process of chemi-
cals or biomacromolecules onto nanomaterial surfaces
arises from the heterogeneity of the particle surface,
the molecule functional groups, and the complex
environment these materials are exposed to, which
govern the nature of interactions that may occur
between them. The complexity increases significantly
with an increase in concentration, because at higher
concentration the competitive interactions between
molecules of the same species as well as coexisting di-
fferent species become extremely complicated. When
the BSAI model for the Langmuir low-concentration
approximation was built, concentrations of probe
chemicals were still required to be experimentally
kept as low as possible to make the Langmuir model
applicable at that condition.30 To build a model
based on higher concentrationmeasurements, models
that consider solute�solute interactions or multilayer
adsorption should be employed instead of the Lang-
muir approach.30�32 More accurate fittings for iso-
therms can be achieved by measuring adsorption at
smaller concentration intervals. For polynomial mod-
els, although concentration is parametrized into the
model itself, the application of such amodel should still
be limited within the concentration range where the
dependence on concentration can be properly de-
scribed as quadratic functions. Other factors that may
be incorporated include pH value and temperature.
Temperature fluctuations in both biological systems
and the environment can significantly alter how the
released nanomaterials are transported and trans-
formed and their stability. In principle our model can
be extrapolated to include a temperature factor, but
certain measures should be employed to avoid exces-
sive variations in temperature, which could cause
evaporation of the volatile small organic chemicals.
Changes of pH also have realistic relevance since when
nanomaterials are transported inside a biological sys-
tem, they are essentially exposed to environments
with different pH values. Such difference would be
expected to have a significant impact on our model,
especially the first four terms, as they are all based on
electron displacement and can be greatly changed
when the concentration of protons is changed in the
solution. Small organic molecules were used to estab-
lish the model because they can be described by
relatively simple descriptors and therefore the adsorp-
tion by more interpretable models, which is perfect for
the sake of surface characterization and categoriza-
tion of NPs. However, it is indeed a challenge to fit a
complex structure such as a large protein to a simple
model by reducing its complexity to five descriptors.
For such an endeavor to succeed, a much larger data

setwould be required to generate a statistically reliable
model.
One direct application of the polynomial model

would be the prediction of the adsorption of mol-
ecules, either contaminants in the environment or
biomacromolecules in biological systems. In our ex-
periments, the concentrations of chemicals were
still kept low so that the original BSAI model and the
Langmuir model can both be applied. In the applica-
tion to prediction, one must make sure that the con-
centration used for model building is at least com-
parable to the concentration of the molecules to be
predicted, because if the concentration falls into a
completely different region, the model itself might
no longer be valid. For the same reason, the probe
chemicals used in model building should also be
spread out over a range of physicochemical properties
whose chemical space is wide enough to cover the
target molecule to be predicted.
It is worthy to note that the surface coating of the

particles made of the same type of materials can make
the adsorption profile significantly different. Opposite
signs in the quadratic terms were observed (e.g., SiO2.
Amino and SiO2.Naked, Figure S3), which would
change the trend of dependence on concentrations.
This is understandable because the trend is deter-
mined by both the number of probe molecules in the
solution and the number of active surface adsorp-
tion sites. In the cases of SiO2.Amino and SiO2.Naked,
obviously the amino coating changed drastically in
p (interactions from molecule dipolarity and polar-
izability) and v (hydrophobic forces), which may be
attributed to the increased hydrophilic sites caused by
the surface coating compared to pristine nanoparti-
cles. Thus, the evaluation of particles engineered with
various surface coatings can be achieved.
Since factors other than solely particle surface forces,

such as intermolecular interactions among different
solutes and water, are largely excluded by the low-
concentration approximation of BSAI descriptors, the
clustering on those descriptors should be able to more
accurately categorize nanomaterials being tested.
One possible application would be using several types
of particles with different but known biological/
environmental behaviors, combining a clustering re-
sult with many other unknown particles, to predict the
behavior of the unknown. For example, similarly clus-
tered particles should attract similar particular types of
proteins. Since the biological impact of nanomaterials
is largely determined by their affinity for biomacromol-
ecules including proteins and subcellular structures
such as lipid bilayers, materials with the same bio-
identity, biodistribution, or toxicity may likely be found
within the same cluster.33

There are also multiple applications in the field
of nanomaterial environmental safety assessment.
A BSAI approach would be particularly powerful in
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characterizing the bioidentity of complex manufac-
tured nanomaterial structures relative to their environ-
mental safety. As demonstrated by our ability to
predict nanomaterial binding to the environmental
contaminants nitrobenzene and chlorophenol, knowl-
edge of a nanomaterial's BSAI would allow initial
predictions of thematerial's interactions with contami-
nants in aqueous environments such as aquifers, sur-
face ponds, and lakes. A more powerful application
would be in environmental remediation, where one
could define an optimal BSAI with high affinity for
a specific contaminant in a defined environment
and then, using statistical clustering, identify an appro-
priate nanomaterial. In order to continue develop-
ment and application of this index, it will be crucial
to correlate BSAI-characterized nanomaterials with
known biological and environmental end points.

CONCLUSIONS

In summary, the present study utilized large sets of
experimental nanomaterial adsorption data and mod-
ified modeling approaches to generate more ad-
vanced BSAI models of nanomaterial surface char-
acterization that possess improved predicting and
categorizing abilities.We have shownbetter prediction
results from the polynomial models over varied con-
centration ranges for both interchemical species
and interconcentration predictions. Better separation,
even among a group of nanomaterials with similar

chemical compositions (e.g., metals and oxides), was
also achieved by infinite dilution approximation based
on Langmuir models. We believe such separation
based on core materials physicochemically originated
from the possible ionic interactions or chelation effects
for metal/oxide and prominent hydrophobic interac-
tions for carbon-basedmaterials. Thus, these improved
models can be established as a standardized charac-
terization method aimed at building a database of de-
scriptors from known nanomaterials along with their
biorelated test data for the prediction of their bioidentity
due to biomolecule adsorption and their possible cellular
uptake pathways. Since biological behavior is largely
determined by the physicochemical interactions with
molecules in biological environments such as serum,
plasma, or lung fluids, the models can also be used to
identify new nanomaterials that may have similar biolo-
gical effects including bioidentity, bioavailability, bio-
distribution, and toxicity by comparing their surface
descriptors to those known nanomaterials documented
in the database through statistical clustering. With further
advancement, such BSAI modeling may be able to be
applied in conjunction with pharmacokinetic models to
describe or predict the fate of nanomaterials within the
whole organism. It has been shown that the improved
BSAI approach can provide an in silico quantitative safety
assessment for nanomaterials and guidelines for the
development of novel nanomaterials for diagnostics
and therapeutics by targeting specific surface descriptors.

MATERIALS AND METHODS

Nanomaterials and Chemicals. Some of the nanomaterials used
in this study (including AlOOH, BaSO4, TiO2, ZnO, SiO2, ZrO2,
and Ag) were obtained through the nanoGEM collaboration.
Data of the rest of the particles were obtained from studies
previously conducted by our group. All chemicals used as
probes in this research were purchased from Sigma (St. Louis,
MO, USA). Brief physicochemical characteristics of the nanoma-
terials used are indicated in Table 1, and detailed characteriza-
tion data of nanoGEM materials can be found in Table S4. The
suffixes of the names indicate the chemical composition of
surface coatings on metal/oxide particles: Naked means no
coating, Amino is a coating of amino groups, PEG is polyethy-
lene glycol, Phosphat means phosphate, Acryl means acrylic
acid, TODacid is trioxadecanoic acid, EO is ethylene oxide, Citrat
is citrate, and PVP is polyvinlypropylene. The number following
the core materials indicates the size (e.g., Ag 50 and Ag 200 are
50 and 200 nm silver particles). NMx numbering refers to the
respective numbering of OECD reference nanomaterials.34,35

We also used carbon-based materials including short multi-
walled carbon nanotubes (sMWCNTs), fullerene (FullrC60), and
multiwalled nanotubes (MWNTs) with surface coatings of either
carboxyl (�COOH) or hydroxyl (�OH).

Adsorption of Nanomaterials with Chemical Probes. The adsorption
experiments were conducted based on an established protocol
by our group with current modifications.12,13 In brief, 2 mg of
nanoparticles was added into a 2mL glass vial filled with 200 μL
of deionized water. The vial was then vortexed to suspend the
nanoparticles before 1 mL of working solution (W1, W5, W10,
W25, or W50) containing probe compounds of various concen-
trations was added to the vial. The vial was then sealed imme-
diately with a Teflon-lined septa cap to prevent evaporation of

compounds. For nanomaterials in aqueous suspensions, a
volume of the aqueous suspensions equal to 2 mg of solid
nanomaterial was mixed with the working solution to get the
same concentrations as the solid nanomaterials above. The
process of adsorption of probe compounds onto nanoparticles
was conducted by vigorous shaking of the mixtures for 5 h until
an equilibrium condition was reached. The particles were then
removed from the solution by centrifugation.

Analysis of Chemical Probes by SPME and GC/MS. Solid phase
microextraction (SPME) in combination with gas chromatogra-
phy mass spectrometry (GC/MS, Agilent GC-QQQ 7000B) was
employed to determine the concentration changes of probe
components before and after adsorption with nanomaterials. In
SPME, a poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB)
membrane coated fiber was used for the extraction of probe
compounds from the liquid phase. The extraction time was
20 min. In GC/MS, separation was performed on a 30 m �
0.25 mm (i.d.) � 0.25 μm (df) HP-5MS capillary column (Agilent,
Palo Alto, CA, USA). The column oven was programmed as
follows: the initial temperature was 40 �C and held for 1 min,
ramped at 20 �C/min to 60 and 2 �C/min to 100 �C, held at 100 �C
for 2 min, then ramped at 20 �C/min to 200 and 40 �C/min to
270 �C, and finally held at 270 �C for 3 min. The injection port
was maintained at 280 �C for using PDMS/DVB fibers. The
injection model was pulsed/splitless and desorption time
was 5 min. An Agilent GC-QQQ/MassHunter workstation was
used for data acquisition. The equilibrium concentrations (Ce)
were directly determined using Qualitative Analysis software
(Agilent). The surface concentration of adsorbed probe com-
pounds was determined as Cad = (V0(C0� Ce))/m, where V0 is the
total volume in the vial, C0 is the concentration of a probe com-
pound prior to adsorption, and m is the mass of nanoparticles
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present in the suspension. The adsorption constant of a given
compound onto a particular type of particle is the ratio of
surface concentration (Cad) versus the equilibrium concentra-
tion (Ce):

k ¼ Cad
Ce

¼ V0(C0 � Ce)
mCe

(2)

Polynomial Modeling. The nanodescriptors for a given nano-
particle were then obtained using multiple linear regression
analysis of the [log k,r,p,a,b,v] matrix. The Abraham solute
descriptors [Ri, πi, Ri, βi, Vi] were generated using the Absolv
module provided by ADME online service (Advanced Chemistry
Development Inc., Toronto, Canada). The regression analysis
was performed by JMP Pro (SAS Institute Inc., Cary, NC, USA).
The robustness of the models was tested by internal cross-
validation using the leave-one-out technique; typically the
model is considered robust when PRESS RMSE < 1 and Qcv

2 > 0.7.
A polynomial dependence of nanodescriptors on concen-

trations is incorporated in themodel: log ki= cþ rRiþ pπiþ aRiþ
bβi þ vVi, i = 1, 2, 3, ..., n, where

c ¼ lT2 þmT þ n

r ¼ lrT
2 þmrT þ nr

p ¼ lpT
2 þmpT þ np

a ¼ laT
2 þmaT þ na

b ¼ lbT
2 þmbT þ nb

v ¼ lvT
2 þmvT þ nv (3)

T = log(Ce/Cs), where Ce is the equilibrium concentration of a
probe in the solution after adsorption and Cs is the solubility of

the probe; chemical activity = Ce/Cs is used as a parametrized
level of chemical saturation in the aqueous phase.

The new regression coefficient becomes [l,m, n, lr, ...,mv, nv]
(polynomial indices). Here, the indices were directly imbedded
in the model when the regression analysis was performed,
instead of being used as regression coefficient in a separate
second-order polynomial model after the original LFER model-
ing is finished. Since this polynomial model takes probe chemi-
cal concentration into consideration, it is ideally suited for the
prediction of the adsorption of various organic chemical species
at different concentrations onto nanoparticles.

Infinite Dilution Adsorption Index Based on Langmuir Theory. Ad-
sorption depends both on nanoparticles physiochemical prop-
erties and on compound concentrations. In order to isolate the
influence of physiochemical properties for nanoparticle char-
acterization, we need to minimize the concentration effects. To
do so, theoretically, we can define the adsorption index for
infinitesimally small concentrations. Such an index, referred to
as infinite dilution adsorption index and denoted by k¥, has the
following definition:

k¥ ¼ lim
C0 f 0

Ce
Cad

In the original BSAI model, the theoretical infinite dilution
adsorption index is approximately obtained through using very
small concentrations. Measurement errors, however, limit the mini-
mumpossible concentration in an experimental setup, because the
concentration measurements should be distinguishable from the
persistent noise. In order to overcome this issue, we alternatively
employed an analysis based on the Langmuir adsorption theory.36

According to Langmuir theory, the relationship between adsorbed
concentration and equilibrium concentration is as follows:

Cad ¼ KQCe
1þ KCe

whereQ is themaximumpossible adsorbedamount asCe increases,
and K is the Langmuir equilibrium constant. At infinitesimally low

TABLE 1. Physicochemical Characterizations of the Nanomaterials Used in This Studya

diameter (TEM, nm) diameter (Zetasizer, nm) zeta-potential (mV) specific surface area (m2/g) surface coating

AlOOH I 37 262 5 47 none
BaSO4 NM220 32 350 �39 41 polymer
TiO2 NM105 21 478 �17 51 none
ZnO NM110 80 20 12 none
SiO2.Amino 15 42 0 200 amino
SiO2.Naked 15 40 �39 200 none/OH
SiO2.PEG 15 50 �26 200 PEG500
SiO2.Phosphat 15 40 �42.9 200 phosphonate
ZrO2.Acryl 9 9 �39 117 acrylic acid COOH polymer
ZrO2.Amino 10 315 3.9 105 amino
ZrO2.PEG 9 27 �7.8 117 PEG600
ZrO2.TODacid 9 9 �6.5 117 troxadecanoic acid
AG50.EO 7 40 �20 86 ethylenoxide
AG50.Citrat 20 35 �45 30 citrate
AG50.PVP 97 123 �7 6.2 polyvinlypropylene
AG200.PVP 134 408 �7 4.5 polyvinlypropylene

outer diameter (nm) length (μm) SSA (m2/g) purity (wt %) surface coating (wt %)

sMWCNT 8�15 0.5�2 233 95
FullrC60 1 98
MWNT-OH 8�15 ∼50 233 95 3.7 OH
MWNT50μm 8�15 ∼50 233 95
MWNT-COOH 10�20nm 10�20 10�30 233 95 2 COOH
MWNT-COOH8nm <8 10�30 500 95 3.86 COOH
MWNT-COOH30�50nm 30�50 10�20 60 95 0.73 COOH

a Full characterization is available in the Supporting Information.
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concentration, Cad/Ce f QK, suggesting that k¥ = QK. There-
fore, fitting the Langmuir model to experimental measurements
provides an estimate of the infinite dilution adsorption index.
Importantly, this estimate is not very sensitive to measurement
errors, as model fitting over multiple concentrations averages out
the errors rather than being solely reliant on estimating a single low
concentration.

In this paper, adsorption data from four concentration
groups were used for the Langmuir regression in the linearized
form: Ce/Cad = (1/Q)Ceþ (1/QK). The low-concentration approx-
imation yields adsorption constant k0 at ideal conditions
(infinitely low concentration) by regression between Ce/Cad
and Ce. The log k¥ was used for BSAI modeling in the same
manner as the original model to generate concentration-
independent nanodescriptors. The model built based on this
approximation can be used to characterize and compare sur-
face physicochemical properties of nanomaterials, since the
exclusion of probe concentration effect is achieved by the
model. The entire process of experimental methods and statis-
tical analysis used to calculate a BSAI index is illustrated by the
flowchart in Figure S1.
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